

کیمیاء

امتحان الشهر الاول

الامتحان شامل إلى صفحة 31

' السؤال الأول: أوضح المقصود بكل من:
1- تفاعل الاتحاد
2- التفاعل الكيميائي
3- تفاعل الإحلال الأحادي
4- المول
5- عدد أفوجادرو6- الصيغة الأولية
7- الصيغة الجُزيئية

? السؤال الثاني: أزن المعادلات الكيميائية الآتية:

جروب الواتساب 0788819621

$$\textbf{1-} \ \textbf{C}_{2} \textbf{H}_{6} + \ \textbf{O}_{2} \ \rightarrow \ \textbf{H}_{2} \textbf{O} + \textbf{C} \textbf{O}_{2}$$

2-
$$Al + Fe_2N_2 \rightarrow AlN + Fe$$

$$\mathbf{3-KCl} + \mathbf{0}_2 \rightarrow \mathbf{KClO}_3$$

4-
$$C_6H_{12}O_6 + O_2 \longrightarrow$$

5-
$$Pb(NO_3)_2 + KI \rightarrow PbI_2 + KNO_3$$

السؤال الثالث: حدد نوع التفاعل في المعادلات الآتية:

$$\textbf{1-} \ C_6 H_{12} O_6 + O_2 \ \rightarrow 2 C O_2 + 6 H_2 O + 4 C \$$

$$2-2Al + 3Br_2 \rightarrow 2AlBr_3$$

$$\mathbf{3-H_2O} \stackrel{\Delta}{\rightarrow} \mathbf{H_2} + \mathbf{O_2} \dots \dots$$

5-
$$2Ca + O_2 \rightarrow 2CaO$$

$$6- Ca + ZnSO_4 \rightarrow CaSO_4 + Zn$$

 CH_3OH , CH_2Cl_2 : السؤال الرابع : إحسب الكتلة الجزيئية لكل من CH_3OH , CH_2Cl_2 : إذا علمت أن الكتلة الذرية لكل من C=12 , C=16 , C=35.5

 $Ca_3(PO_4)_2$, Na_3PO_4 : لكل من F_m لكل من إحسب كتلة الصيغة المسؤال الخامس والمسؤال الخامس المسؤال المسؤال الخامس المسؤال الم

السؤال السادس : إذا علمت أن عنصر الكربون $oldsymbol{C}$ يوجد في الطبيعة على صورة النظير $oldsymbol{C}_6^{12}$ وان كتلته الذرية تساوي 12.1 موجود بنسبة 98% والنظير C_6^{13} الذي كتلته الذرية تساوي 13 موجود بنسبة 08% والنظير إحسب الكتلة الذرية النسببية لعنصر الكربون.

(H=1, N=14, Cl=35.5) السؤال السابع : إحسب كتلة 3 مول من NH_4Cl علمًا أن الكتلة الذرية لكل من

ملاحظة: إستخدم المعلومة الآتية لحل السؤال الثامن والتاسع.

مدد أفوجادرو $10^{23} \times 6.022$

 C_2H_6 الموجودة في 50g من غاز الايثان (N) الموجودة الثامن إحسب عدد الجُسيمات (N) الموجودة الثامن الثامن المتاب علمًا أن الكتلة الذرية: C=12, H=1

06 222 9990

? السؤال التاسع: إحسب عدد الجزيئات الموجودة في 5 مول من الملح NaCl

ا ابعث نقطة اضيفك على الواتساب 0788819621

? السؤال العاشر: إذا علمت أن الكتلة الذرية (H = 1, N = 14) أ- كمل الجدول الآتى:

 $3H_2 + N_2 \rightarrow 2NH_3$

H_2	N_2	NH ₃	
			عدد المولات n
			عدد الجُزيئات N
			الكتلة المولية Mr

ب- فسر قاتون حفظ الكتلة للتفاعل

4

? السؤال الحادي عشر: إحسب نسبة كل من الكربون والأكسجين في عينة نقية تتكون من 2.4 كربون و 6.4 أكسجين.

? السؤال الثاني عشر: ما الصيغة الأولية لمركب يتكون من %94 من الأكسجين ، و %5.9 من الهيدروجين ، علمًا بأن الكتلة الذرية (O=16, H=1)

? السؤال الثالث عشر: ما الصيغة الجُزيئية لمركب يتكون من 14g من النيتروجين و 12g من الكربون و 4g من الهيدروجين ، علمًا ان الكتلة المولية (60 g/mol).

النتهث الأسلام

ابعث نقطة اضيفك على الواتساب 0788819621

الأحاثاي

? السؤال الأول: أوضح المقصود بكل من:

- 1- تفاعل الاتحاد : تفاعل يحدث بين مادتين أو أكثر (عناصر أو مركبات) لينتج مركبًا واحدًا جديدًا.
- 2- التفاعل الكيميائي: عملية يحدث فيها تكسير الروابط بين ذرات عناصر المواد المتفاعلة ، وتكوين روابط جديدة بين ذرات العناصر المواد الناتجة.
 - 3- تفاعل الإحلال الأحادي: تفاعل يحل فيه عنصر نشطٌّ محل عنصر آخر أقل نشاطًا منه في أحد أملاحه.
 - 4- المول: الوحدة الدولية التي تستخدم في قياس كمية المواد في التفاعلات الكيميائية.
 - $6.022 imes 10^{23}$. عدد أفوجادرو: عدد الذرات أو الجزيآت أو وحدات الصيغة ويساوي. $6.022 imes 10^{23}$
 - 6- الصيغة الأولية: صيغة تُبيّن الأعداد الفعلية للذرات وأنواعها في المركب
 - 7- الصيغة الجُزيئية: صيغة تُبيّن الأعداد الفعلية للذرات وأنواعها في المركب

? السؤال الثانى: أزن المعادلات الكيميائية الآتية:

1-
$$2C_2H_6 + 7O_2 \rightarrow 6H_2O + 4CO_2$$

2- $2AI + Fe_2N_2 \rightarrow 2AIN + 2Fe_2$

$$2-2Al + Fe_2N_2 \rightarrow 2AlN + 2Fe$$

$$3-2KCl + 3O_2 \rightarrow 2KClO_3$$

4-
$$C_6H_{12}O_6 + \frac{6}{6}O_2 \longrightarrow \frac{6}{6}CO_2 + \frac{6}{6}H_2O$$

$$5-2Mg+O_2 \rightarrow 2MgO$$

ابعث نقطة اضيفك على الواتساب 0788819621

? السؤال الثالث: حدد نوع التفاعل في المعادلات الآتية:

$$1- C_6 H_{12} O_6 + O_2 \rightarrow 2 C O_2 + 6 H_2 O + 4 C$$
 إحتراق

3-
$$H_2O \stackrel{\Delta}{\rightarrow} H_2 + O_2$$
 تفکك

4-
$$Zn + CuCl_2 \rightarrow ZnCl_2 + Cu$$
 إحلال أحادي

$$5-2Ca+O_2 \rightarrow 2CaO$$
 اتحاد أوإحتراق

6- Ca + ZnSO
$$_4$$
 \rightarrow CaSO $_4$ + Zn

أ. مصطفى مكي

الصف التاسع - الصف العاشر

 CH_3OH , CH_2Cl_2 : السؤال الرابع : إحسب الكتلة الجزيئية لكل من (C=12, H=1, O=16, CI=35.5) إذا علمت أن الكتلة الذرية لكل من

الحل:

الكتلة الجُزيئية Mm: (الكتلة الذرية للعنصر1×عدد ذراته)+(الكتلة الذرية للعنصر2×عدد ذراته)

$$Mm = A_{m_1} \times N + A_{m_2} \times N$$

1
$$CH_3OH mr = 12 \times 1 + 1 \times 4 + 1 \times 16 = 32 amu$$

$$2 CH_2Cl_2 mr = 12 \times 1 + 1 \times 2 + 35.5 \times 2 = 84 amu$$

ابعث نقطة اضيفك على الواتساب 0788819621

 ${\it Ca}_3({\it PO}_4)_2$, ${\it Na}_3{\it PO}_4$: لكل من ${\it F}_{
m m}$ لكل من إحسب كتلة الصيغة ${\it ?}$ إذا علمت أن الكتلة الذرية لكل من (Ca=40, O=16, Na=23, P=30)

الكتلة الصيغة Fm:(الكتلة الذرية للعنصر1×عدد ذراته)+(الكتلة الذرية للعنصر2×عدد ذراته)

$$F_m = A_{m_1} \times N + A_{m_2} \times N$$

$$F_{m\ Ca_3(PO_4)_2} = 40 \times 3 + 30 \times 2 + 16 \times 8 = 308\ amu$$

$$F_{m Na_3Po_4} = 23 \times 3 + 30 \times 1 + 16 \times 4 = 163 \ amu$$

السؤال السادس : إذا علمت أن عنصر الكربون f C يوجد في الطبيعة على صورة النظير $f C_6^{12}$ وان كتلته الذرية f ?تساوي 12.1 موجود بنسبة 98% والنظير C_6^{13} الذي كتلته الذرية تساوي 13 موجود بنسبة 1.11%، إحسب الكتلة الذرية النسببية لعنصر الكربون.

الحل:

من خلال القانون

$$A_m = A_{m_1}\% + A_{m_2}\%$$

Am = $12.1 \times 98\% + 13 \times 1.11\% = 12 \ amu$

او من خلال القانون

الكتل الذرية النسبية Am =(الكتلة الذرية للنظير1× بنسبة توفره في الطبيعة الكتل الذرية النسبية Am =(الكتلة الذرية النظير2 × 100 الكتل

$$Am = \frac{12.1 \times 98}{100} + \frac{13 \times 1.11}{100} = 12 \ amu$$

(H=1, N=14, Cl=35.5) علمًا أن الكتلة الذرية لكل من NH_4Cl علمًا أن الكتلة الذرية الكل من الحسب كتلة ?

الحل:

1 نحسب الكتلة المولية

$$Mr = A_{m_1} \times N + A_{m_2} \times N$$

$$Mr = 14 \times 1 + 1 \times 4 + 35.5 \times 1 = 53.5 g/mol$$

2 نحسب الكتلة

$$n = \frac{m}{mr}$$
 $m = n \times mr$ $m = 3 \times 53.5 = 160.5 mol$

ملاحظة: إستخدم المعلومة الآتية لحل السؤال الثامن والتاسع.

عدد أفوجادرو $10^{23} \times 6.022$

 C_2H_6 الموجودة في 50g من غاز الايثان C_2H_6 الموجودة في C_2H_6 الايثان C_2H_6 الكتلة الذرية : C_2H_6 الموجودة في C_2H_6 الموجودة في C_2H_6 الايثان علمًا أن الكتلة الذرية : C_2H_6

$$Mr = 12 \times 2 + 1 \times 6 = 30 \ g/mol$$

الســـوال ثار

الحل:

نحسب عدد المولات

$$n = \frac{m}{mr}$$
 $n = \frac{50}{30} = 1.66 \text{ mol}$

$$N = N_A \times n$$
 $N = 6.022 \times 10^{23} \times 1.66 \approx 10.3 \times 10^{23}$

? السؤال التاسع: إحسب عدد الجزيئات الموجودة في 5 مول من الملح NaCl

الحل:

$$N = N_A \times n$$
 $N = 6.022 \times 10^{23} \times 5 = 30.11 \times 10^{23}$

السوال العاشر: إذا علمت أن الكتلة الذرية (H = 1, N = 14)

أ- كمل الجدول الآتي:

$$3H_2 + N_2 \rightarrow 2NH_3$$

H_2	N_2	NH ₃	المعلومات
3	1	2	عدد المولات n
3× عدد أفوجادرو	عدد أفوجادرو	2 × عدد أفوجادرو	عدد الجُزيئات N
Mr =2×1=2 g/mol	Mr = 2×14= 28 g/mol	Mr = 1×14+ 3×1=17 g/mol	الكتلة المولية Mr

ب- فسر قانون حفظ الكتلة للتفاعل .

عدد الذرات ونوعها قبل التفاعل يُماثل عددها ونوعها في المواد الناتجة

عدد الذرات الناتجة	عدد الذرات المتفاعلة	نوع الذرات
6	6	هيدروجين
2	2	نيتروجين

06 222 9990

? السؤال الحادي عشر: إحسب نسبة كل من الكربون والأكسجين في عينة نقية تتكون من 2.4 كربون و 6.4 أكسجين. الحل:

نحسب كتلة المركب: 6.4 + 2.4 = 8.8g

نسبة الأكسجين

 $0\% = \frac{6.4}{8.8} \times 100 = 73 \%$

النسبة للكربون

$$C\% = \frac{2.4}{8.8} \times 100\% = 27\%$$

? السؤال الثاني عشر: ما الصيغة الأولية لمركب يتكون من %94 من الأكسجين ، و %5.9 من الهيدروجين ،

علمًا بأن الكتلة الذرية (O=16, H=1)

الحل:

العنصر	H	0
النسبة المئوية لكل عنصر	5.9	94.1
عدد مولات كل عنصر	$\frac{5.9}{1} = 5.9$	$\frac{94.1}{16} = 5.9$
أبسط نسبة عددية صحيحة	1	1

إذًا الصيغة الأولية هي HO

[11]

إعداد المعلم : مصطفى مكّي

الصف

امتحان الشهر الاول الكيمياء

السؤال الثالث عشر: ما الصيغة الجُزيئية لمركب يتكون من 14g من النيتروجين و 12g من الكربون و 4g من الكربون و 4g من الهيدروجين ، علمًا ان الكتلة المولية (60 g/mol).

الحل:

نجد الصيغة الأولية

العنصر	N	С	Н
الكتلة	14	12	4
عدد المولات	$\frac{14}{14}=1$	$\frac{12}{12}=1$	$\frac{4}{1}=4$
أبسط نسبة عددية	1	1	4

 CH_4N : إذًا الصيغة الأولية هي الكتلة الأولية نحسب الكتلة المولية للصيغة الأولية $14\times1+4\times1+12\times1=30$ g/mol

الأن نجد الكتلة الجُزيئية من خلال معرفة العدد الفعلي للذرات

الكتلة المولية المركب العدد الفعلي للذرات = عدد الذرات من الصيغة الأولية المركب الكتلة المولية المولية الأولية الأولي

$$2 = \frac{60}{30} \times 1 = C$$
 العدد الفعلية ل

$$8 = \frac{60}{30} \times 4 = H$$
 العدد الفعلية ل

$$2 = \frac{60}{30} \times 1 = N$$
 العدد الفعلية ل

: الصيغة الجُزيئية $C_2H_8N_2$

جروب الوانساب 0788819621

12

فیدیوهات شرح المادة بشکل کامل علی بطاقات أساس

